
NOISE-MEDIATED COOPERATIVE BEHAVIOR IN A SYSTEM OF COUPLED DC SQUIDS

J. A. Acebŕon
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ABSTRACT

We study the oscillator equationsdescribinga systemof
coupleddcSQUIDs. Thecirculatingcurrentin eachSQUID
is inductively andglobally coupledto the loop currentsin
the other SQUIDs. Justbeyond the onsetof spontaneous
oscillations,thesystemshowssignificantlyenhancedsensi-
tivity to very weakmagneticfields. Theability to quantify
theoscillationfrequency permitsits explotaitionasa detec-
tion/analysistool in remotesensingapplications.Herewe
presentquantitativeresultsaboutsuchoscillationfrequency
andits scalingin termsof the control parameters,andthe
numberof SQUIDs involved. For infinitely many coupled
SQUIDs, the thermodynamiclimit, we derive a nonlinear
Fokker-Planckequation. This mean-fieldequationallows
usto explorethevariousregimesof operationof thesystem
analyticallyaswell asnumerically.

1. INTRODUCTION

Thestudyof nonlineardynamicalbehavior in systemsthat
undergobifurcationsvia changinga controlparameteris of
considerableinterest[1]. Whentunedneartheonsetof bi-
furcations,dynamicalsystemscandisplayanenhancedsen-
sitivity to externalperturbationswith the responsecharac-
terizedby signalamplification,oftenwith a concommittant
loweringof anenvironmentalnoise-floor, but also(depend-
ing on the parameters)potentiallyadverseeffectse.g. the
amplificationof environmentalfluctuationswith anaccom-
panying loweringof theresponseSNR.Amongthenonlin-
earsystemsthat have beenstudiedin recentyears,the dc
SQUID hasrecentlyreceived considerableattention,since
it is adevice thatis severly constrainedby noisefloorissues
andonein which a detailedstudyof the (noise-mediated)
cooperative behavior in variousregimesof operationcan
yield clevertechniquesfor confrontingnoise-relatedperfor-
manceissuesthatconstraincurrentdevices.

Thedc SQUID [2] consistsof two Josephsonjunctions
symmetricallyinsertedintoasuperconductingloop,andchar-
acterizedby atwo-dimensional(2D) setof dynamicalequa-
tions for the junction Schr̈odingerphasedifferences.Our
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interestin theSQUID stemsfrom its relevanceasthemost
sensitive detectorof magneticfields, beingwidely usedin
a variety of fields including biomagnetics,geophysicsand
explosivedetection.

Past researchactivities have focusedprimarily on de-
signing anddevelopingsophisticatedshieldingandnoise-
cancellationtechniquesto renderSQUIDsmorenoise-tolerant.
Noise-mediatedcooperative behavior hasbeenstudiedby
us in the dc SQUID. Recentcalculations[3] showed that
the applicationof a target or “injection locking” signalat
(or slightly detunedfrom) the running frequency, resulted
in a loweringof thenoisefloorat all frequencies,andmore
recentcalculations[4] have, in fact, revealeda true “reso-
nance”behavior in the response:a maximumin the aver-
ageloop screeningcurrentor its spectralamplitudeoccurs
whenthe targetsignalfrequency matchesthedeterministic
runningfrequency.

In thispaper, westudythedynamicalbehavior in aglob-
ally coupledensembleof dc SQUIDs in the presenceof
backgroundnoise. Thereare likely several differentways
to constructexperimentallya systemof globally coupled
SQUIDs. Onepossibleexperimentalscenariocouldbethe
following: a network of pickupcoils is connectedin paral-
lel to senseandsumthe fluxesof all the SQUIDs. Some
of the resultingflux (dependingof the coupling strength)
is appliedto eachSQUID by feedingbackthe total output
currentthrougha feedbackcoil. Sinceevery SQUID can
interactmagneticallywith the next neighbor, leadingto a
local-typecoupling, it is advisableto placeeachSQUID
into a shieldedenvironment. This form of couplinggives
rise to a near-global coupling similar to the one we have
proposedhere,with eachSQUID subjectto a flux due to
all the otherSQUIDs in the sameway. Global couplingis
alsomostamenable(of all the possiblecouplingschemes)
to theoreticaltreatment.

We studyour globally coupledsystembothanalytically
andnumerically, finding that thesystemexhibits staticand
oscillatory regimesof operation,completelyanalogousto
the singleSQUID case,studiedearlier [5, 3]. Our analy-
sisstemsfrom thecentermanifoldreductiontechniquethat
wasappliedto thesingleSQUID problem,andrecentlyde-
scribedsemi-analytictechniquesfor solving the 2D FPE



associatedwith the Langevin dynamics[6]. This previous
work is convenientlygeneralizedto treatthe N-SQUID (N
maybearbitrary)casewith global coupling,but with non-
identicalSQUIDs.

Thepaperisorganizedasfollows: After arapidoverview
of thedc SQUID dynamicsin section2, we presentanan-
alytical calculationof the frequency of the running state
andits scalingin termsof thedistancefrom thebifurcation
point. Finally (section4) we investigatetheeffect of noise
on the coupledsystemdynamics. Our resultsaresumma-
rizedanddiscussedin section5.

2. BACKGROUND AND MODEL EQUATIONS

In termsof the Schr̈odingerphaseangles
����� �

of the two
(assumedidentical)Josephsonjunctionswecanexpressthe
measureablescreeningcurrent� in theloop:	 ���
�� � ��
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the loop inductance,and � � an
externalappliedmagneticflux, � 
 �#"  ��$ beingthe flux
quantum. In the absenceof noiseand a target magnetic
flux, we can usethe RSJmodel to write down equations
for thecurrentsin thetwo armsof theSQUID via a lumped
circuit representation;whentransformedvia theJosephson
relations %�'& � ��$�( &  *)" linking thevoltageandthequantum
phasedifferenceacrossthe junction + , theseequationstake
theform,, %�!� � �'-� 
 � 
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where , � )"  �8$!9 ,
9

beingthe normalstateresistanceof
thejunctions.Thetwo naturalexperimentalcontrolparam-
etersare the applieddc magneticflux � � and the dc bias
current �'- , which we take to be symmetricallyappliedto
theloop. It is convenientto rescaletimeby , andintroduce
a scaledflux � �;: � � �  � 
 andbiascurrent < � �'-  >= � ��
!? .

This systemexhibits two regimesof operation[5, 3].
For afixed � �;: , asaddle-nodeconnectiontakesplacewhen
the bias current < exceedsa critical value <*@ . For <BA< @ , thenoiselesssystemhastwo fixedpoints,onestable(a
node)andoneunstable(a saddle). This is the “supercon-
ductingregime” with the potentialenergy function admit-
ting of stableminimacorrespondingto a currentconserva-
tion

� < � /2143 � � 6 /2143 � � . For <DCE< @ the fixed points
disappearand we obtain oscillatory solutionswhosefre-
quency obeys thecharacteristicsquare-rootscalinglaw [1].
This latterregimeis theso-called“runningregime”,andthe
propertiesof thesolutionsnearthebifurcationhaverecently
beenstudied[3]. We extendthemodelequations(2) to de-
scribeasystemof globally linearlycoupleddcSQUIDs, the

theoreticalvariablesof interestbeingtheSchr̈odingerphase
differences

�*FHG�IJ =4K � L � � ? acrosseachJosephsonjunction
of the MONQP SQUID (k=1,...,N):, G��
 G %�*FRG�IJ � < G 6 = 
 L ? J � G��
 G 
 /S1R3 �*FRG�IJ � (3)

where � G representsthecirculatingcurrent, < G thenormal-
ized(to � 
 G ) externallyappliedbiascurrent,� 
 G thecritical
currentof thejunctions,and , G � )"  T= ��$!9 G ? is a character-
istic time constant(

9 G beingthenormalstateresistanceof
thejunctions).Thecirculatingcurrent � G at thekth SQUID
is inducedin theloopbyanexternalmagneticflux ��� which
is assumedidenticalfor all SQUIDs. EachSQUID is induc-
tively coupledto theloopcurrentsof theremainingSQUIDs
with equalmutualinductancecouplingof strengthU . The
circulatingcurrentcanbewritten in theform:	 G � G��
 G � �*FRG�I� 
 �*FRG�I� 
 ���� 
 VW ��� 6 UYXZ\[] G � Z�^_ (4)

where
	 G �`����� G ��
 G  � 
 is the nonlinearityparameterof

the MONQP SQUID,
� G being its loop inductance. Note that

thecirculatingcurrent � Z appearingon theright handside
of (4) is itself a functionof every othercirculatingcurrent.
In fact, it representsaninfinite nestedseriesthat in general
cannotbesummedin closedform. However, in sucha case
anexpansionin powersof U canbeobtained.

3. GLOBALLY COUPLED SQUIDS WITHOUT
NOISE

As mentionedearlier, a singledc SQUID exhibits two dif-
ferent statesof operation: a superconductingstatewhere
the long-timephasesaretime-independent,anda “running
state”characterizedbyoscillatoryphases.Quantifyingsmall
changesin thefrequency thatoccurin thepresenceof exter-
nal (target)signalscouldafford adetectionmechanism,and
experimentsinvolving synchronizationto anexternalsignal
or to anotherSQUID would inevitably benefitfrom a priori
knowledgeof theoscillationfrequency in termsof thebias
parameters.

Our calculationis madepossibleby the fact that close
to the singularpoint thereis a well-definedseparationof
time-scalesthatpermitsa centermanifold reductionof the
effective phasespace.This rendersthedynamicsaccesible
to analyticcomputationcloseto theonsetof thebifurcation.
Thecompletecalculationscanbefoundin [4], hereweshow
the main stepsof sucha calculation. In a first stepa local
analysiscloseto the singularpoint capturesthe very slow
dynamicswhich is responsiblefor the long period of the
running state. Secondly, we get a quantitative expression
for therunningperiodby solvingtheevolution equationon



the centermanifold. The result is increasinglyaccurateas<bac<*@ � , <*@ � beingthecritical biascurrentcorresponding
to theSQUID with smaller

	
. Theevolution on the center

manifoldis givenby%d � � = < 
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ih /2143jg � 6lk d �� 6 �!m�n �	o� d �6qp =2= < 
 < @ � ?sr�? � (5)

whereg � , k ,
m

, and
h

dependonthebiasparameters,andthe
critical fixed point (seeRef. [5] for calculationaldetails),
and n � ��� U  � 
 . Integratingthelastequation,we obtain
thesolutiond � =ut ? � v w k 
 m � n!xk �zy|{ 3~} t.� w k 
im � n�x5� 
 m n �k � (6)

where
w � = < 
 <*@ � ?>e'f�/>g � 
bh /S1R3jg � . Thus,for the fre-

quency of therunningstatewe find� � � w k 
�m � n x  ��� (7)

Noticethatthefrequency of therunningstatedecreaseswhen
thecoupling(i.e. n ) increases.In fact,thereexistsa critical
valueof thecouplingabovewhichtheoscillationfrequency
is zero:too stronga coupling“kills” therunningstates.

Fig. 1(a) shows a comparisonbetweenthe numerical
simulationsof thesystemof equations(3) andthefrequency
obtainedby usingtheanalyticalexpression(7) for thecase
of � � �

. The agreementbetweenthe numericalresults
and the analytical resultsis excellent, particularly, as ex-
pected,for small valuesof < 
 < @ � . Fig. 1(b) shows a
similar comparisonfor thecaseof � ��� , and � �7� .

4. GLOBALLY COUPLED SQUIDS WITH NOISE

In thissection,wepresentsomeresultsinvolving themodel
equations(3) in presenceof thermalnoise,andin the limit
of infinitely many SQUIDs. Specifically, we investigatethe
system(3)-(4), up to order U � , in presenceof Gaussian
whitenoises,with Al� F J I& =�t ?�C �7� , A�� F4��I& =ut ?s� F Z IJ =uts� ?�C ���� �5& J � � Z � =ut 
 ts� ? .

We are interestedin the analyticalinvestigationof the
Langevin dynamicsabove for the caseof very large � . A
neatpicture of sucha casecan be given by the limiting-
modelobtainedwhen ��ac� (thermodynamiclimit). In
this limit, it is well known [7] thatmodelswith mean-field
coupling are describedby an evolution equationfor one-
particleprobabilitydensity. Suchaprobabilitydensity� = ��� � �'� � t ?is asymptoticallyin the limit, ��a�� , thesolutionof the
following nonlinearFokker-Planckequation(FPE):� �� t � ��� � � ��o� �� 6 � � ��o� ���� 
 ��O�!� = d � ��? 
 ��o�'� = d � �>?�� (8)
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Fig. 1. Comparisonbetweenthe numericalsimulationsof
the systemof equations(3), and the frequency obtained
analytically for (a) � � �

, and (b) � ��� , � �c�SQUIDs. Two differentvaluesof thebiascurrentareused
in figure (a): < � <*@ � 6 � � �8� L , and < � <*@ � 6 � � ���8��� ,with <*@ � �#� �   � L8L � � . Parametersare

	 � �#� � ¡ � 	 � � L
,	 r � L � L , 	 x � L � � , and � �;: �¢� � � .

Thedrift-termsaregivenby

d � = � � � � � � t ? � < 
 L	 = � ��
 � ��
����¤£
¥��� ���;: 
 ��� U� 
 )��? 
 /21R3 � � (9)d � = ��� � �5� � t ? � < 6 L	 = ��� 
 �'� 
����¤£
¥��� � �;: 
 ��� U� 
 )��? 
 /S1R3 �'� � (10)

with
£

chosenin orderto obtaina periodiccontinuationof
thecoefficients. < ,

	
, and � �;: arepickedup from a given

distribution, ¦ = <�? , � = 	 ? , and
" = � �s: ? respectively, andthe



theaveragescreeningcurrentis now givenby)� =�t ? �¢§`¨ <o¦ = <�? §`¨ 	0� = 	 ? §©¨ � �s: " = � �;: ? § �2ª
 § �2ª
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The probability densityis requiredto be
���

-periodicasa
functionof

�!�
, and

�'�
, andnormalizedto one.

To studythenonlinearFPEwe proposeda new numer-
ical method,which consistsin a generalizationof a spec-
tral methodfor a singleSQUID alreadyderivedin [6]. The
ideais to expand � in Fourierseries,exploiting the2

�
- pe-

riodicity in
� �

, and
� �

. Introducingsuchexpansioninto the
Fokker-Planckequation,we obtain a infinite hierarchyof
ordinarydifferentialequationsfor themoments« Z¬ , where
theaveragescreeningcurrent )� is givenby,)� =ut ? � � 
	®­ 
   � �i¯X � ] � = 
 L ? �° Im = «�± �� $ ± &²�|ª ��³O´¶µ ?¸·¹� (12)

The numericalmethodconsistsof truncatingthe hierarchy
of first-order, couplednonlineardifferentialequations,for a
reasonablenumberof modes� � 
 � � �'�'� � � , and º �
 U � �5�'� � U , setting«�»½¼ �¾ ¼ � � « ± » ± �± ¾ ± � �¢� . Thenumberof
modes� � U shouldbechosenso largethanthenumerical
resultsdonot dependon � , and U .

In Fig. 2, weshow acomparisonbetweenthenumerical
solutionobtainedby meansof theFokker-Planckapproach
for aone-SQUID probabilitydensity, andthesolutionof the
Langevin equationsfor a large numberof SQUIDs ( � ������ ). It is remarkablethat the solutionof the FPE,corre-
spondingto the limiting-modelobtainedwhen �¿aÀ� , is
seento provideexcellentagreementwith thefinite sizecase.
Thismanifeststhefactthat � � L ���8� is alreadycloseto in-
finity for apracticalpurpose.

5. CONCLUSIONS

Thiswork representsacontinuationof alineof researchinto
the behavior of dynamicalsystemsin the vicinity of bifur-
cations.Our focushasbeenon largearraysof suchoscilla-
tors,motivatedby earlierwork on the(potentially)positive
role of couplingfor a varietyof signalprocessingapplica-
tions.Clearly, increasingthecouplingand/orthenumberof
coupledentitiesshouldafford a valuabletool for lowering
thespontaneousoscillationfrequency. In turn, thismakesit
moreconvenientto detectlow frequency oscillationsin an
externalsignalby matchingthemto the runningfrequency
(which playstherole of aninternal“clock”). Whenthetar-
get signal is appliedto every SQUID, the enhancementof
the spectralresponseis amplified; this is an extensionof
our work on singleSQUID dynamicsin the presenceof a
target signal and a noise-floor, and elucidatesthe role of
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Fig. 2. Comparisonbetweenthe numerical simulation
of the Fokker-Planckequation(spectralmethod),and the
Langevin equationswith � �®�8�8� . SQUIDs are identi-
cal, andparametersare < 
 �#� � ��� , 	 
 � L

, ���;:�Æ �#� � � ,U ��� � � L , and
� �7� � L .

coupling,aswell asthenecessityof choosingthecoupling
coefficientscarefully.
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